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LOCALIZATION AND LOCALIZED FRACTURE
PHENOMENA IN INELASTIC SOLIDS

UNDER CYCLIC DYNAMIC LOADINGS

The main objective of the paper is the investigation of localization and localized fatigue
fracture phenomena in thermo–viscoplastic flow processes under cyclic dynamic loadings.
Recent experimental observations for cycle fatigue damage mechanics at high temperature
and dynamic loadings of metals suggest that the intrinsic microdamage process does very
much dependent on the strain rate and the wave shape effects and is mostly developed in
the regions where the plastic deformation is localized.

The description of kinematics of finite deformations and the stress tensors is pre-
sented. The rates of the deformation tensor and the stress tensor are defined based on the
Lie derivative.

A general constitutive model of elasto–viscoplastic damaged polycrystalline solids
is developed within the thermodynamic framework of the rate type covariance structure
with finite set of the internal state variables. A set of the internal state variables is assumed
and interpreted such that the theory developed takes account of the effects as follows: (i)
plastic non–normality; (ii) plastic strain induced anisotropy (kinematic hardening); (iii)
softening generated by microdamage mechanisms (nucleation, growth and coalescence
of microcracks); (iv) thermomechanical coupling (thermal plastic softening and thermal
expansion); (v) rate sensitivity; (vi) plastic spin. To describe suitably the time and tem-
perature dependent effects observed experimentally and the accumulation of the plastic
deformation and damage during dynamic cyclic loading process the kinetics of microdam-
age and the kinematic hardening law have been modified. The relaxation time is used as a
regularization parameter.

Fracture criterion based on the evolution of microdamage is formulated.
Utilizing the finite difference method for regularized elasto–viscoplastic model,

the numerical investigation of the three–dimensional dynamic adiabatic deformation in a
particular body under cyclic loading condition is presented. Particular examples have been
considered:

(i) Dynamic, adiabatic and isothermal, cyclic loading processes for a thin steel
plate with small rectangular hole located in the centre are considered. The accumulation
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of damage and equivalent plastic deformation on each considered cycle has been obtained.
It has been found that this accumulation distinctly depends on the shape of the assumed
loading cycle.

(ii) A dynamic adiabatic cyclic loading process for a thin steel plate with sharp
notch is investigated. The propagation of the macroscopic fatigue damage crack within the
material of the plate is investigated. It has been found that the length of the macroscopic
fatigue damage crack distinctly depends on the wave shape of the assumed loading cycle.

The results obtained are in accord with the experimental observations performed
by Sidey and Coffin (1979).
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1. INTRODUCTION

The paper aims in the investigations of localization of plastic deformation
and localized fracture phenomena in thermo–viscoplastic flow processes under
cyclic dynamic loadings.

A number of plasticity models have been recently proposed for cyclic load-
ings, cf. Auricchio, Taylor and Lubliner (1992), Auricchio and Taylor (1995),
Chaboche (1986), Dafalias and Popov (1976), Duszek and Perzyna (1991), Mróz
(1967), Ristinmaa (1995), Van der Giessen (1989) and Wang and Ohno (1991).
However none of these theories is able to describe properly the mechanism of fa-
tigue damage when time and strain rate effects are important. Such effects have
been observed by Sidey and Coffin (1979), cf. chapter 2.

The main objective of the present paper is the development of the thermo–
elasto–viscoplasticity theory of damaged polycrystalline solids which takes into
account the time and temperature dependent effects observed experimentally and
the accumulation of the plastic deformation and damage during dynamic cyclic
loading processes. To describe these effects we intend to modify a constitutive
model of thermo–elasto–vicsoplastic damaged polycrystalline solids developed by
Duszek–Perzyna and Perzyna (1994). The main modification concerns the kinet-
ics of microdamage and the kinematic hardening law. Next, we would like to use
the developed theory to the investigation of the localization of plastic deforma-
tion in complex thermo–elasto–viscoplastic flow processes under cyclic dynamic
loadings.

Chapter 3 is devoted to the description of kinematics of finite deformations
and the stress tensors. The fundamental measures of total deformation are intro-
duced. The decomposition of the strain tensor into the elastic and viscoplastic part
is presented. The rates of the deformation tensor and the stress tensor are defined
based on the Lie derivative.

In chapter 4 a general constitutive model of elasto–viscoplastic damaged
polycrystalline solids is developed with the thermodynamic framework of the rate
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type covariance structure with finite set of the internal state variables. A set of the
internal state variables consists of the equivalent plastic deformation, volume frac-
tion porosity and the residual stress (the back stress). The theory developed takes
account of the effects as follows: (i) plastic non–normality; (ii) plastic induced
anisotropy (kinematic hardening); (iii) plastic spin; (iv) softening generated by
microdamage mechanisms; (v) thermomechanical coupling (thermal plastic soft-
ening and thermal expansion); (vi) rate sensitivity. The relaxation time is used as
a regularization parameter. Fracture criterion based on the evolution of microdam-
age is formulated.

In chapter 5 the numerical solution of the initial–boundary value problem
(evolution problem) is examined. A formulation of an adiabatic inelastic flow pro-
cess is presented. Basic features of a rate dependent plastic model are discussed.
The approximation based on the finite difference method and the discussion of
the stability condition are presented. The Lax–Richmyer equivalence theorem is
formulated and conditions under which this theorem is valid are discussed.

Chapter 6 is devoted to the numerical investigation of dynamic adiabatic and
isothermal, cyclic loading processes for two particular examples.

In chapter 7 the localization of plastic deformation and fatigue damage are
investigated.

In chapter 8 the final comments are presented.

2. EXPERIMENTAL AND PHYSICAL MOTIVATIONS

Sidey and Coffin (1979) investigated the mechanisms of fatigue as they bear
on fatigue damage at elevated temperature when time and strain rate effects are
important. This regime is often referred to as that of time–dependent fatigue.

Test on oxygen-free high conductivity (OFHC) copper at 673 K are exam-
ined using unequal strain rates to produce the wave shape. Some typical wave
shape are shown in Fig. 1, they include equal–equal, slow–fast and fast–slow.
Specimens with a gage length of 12.70 mm and diameter of 6.35 mm were used.
Strain–controlled fatigue tests were carried out at 673 K in air with a total strain
range of 1.0 percent. In each test the cycle time was kept constant at 600 s but
the tensile and compressive strain rates were varied so that a study of wave–shape
effects could be made. In the case of the unbalanced loops, the ratio of fast to slow
strain rates was fixed at 100 to 1 with the slow strain rate being 1.7× 10−5 s−1. A
strain rate of 3.3 × 10−5 s−1 was used in equal ramp rate tests.

Table 1 shows the number of cycles to failure and the time to failure under
the various testing conditions. It can be seen that when the total cycle time is kept
constant the number of cycles to failure decreases as the tensile–going strain rate
decreases.

Fig. 2 shows the failure crack in the fast–slow test. The crack path is trans-
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Table 1. Effect of wave-shape on the number of cycles to failure of OFHC copper at 673 K

Cycle Slow–Fast Equal Fast–Slow
Nf 104 380 1138
tf (h) 17 63 190

granular and has started from the surface. Many transgranular surface cracks had
initiated and grown for depths up to 0.5 mm but presumably these had ceased
growing when one crack became dominant. No internal intergranular cracks were
observed.

In contrast, failure in the slow–fast test was intergranular (Fig. 3). Near the
fracture edge, extensive intergranular cracks can be seen which have been opened
out by the final failure. Many of these cracks were wedge type, but at higher mag-
nifications linked cavities could be seen. It was noted that cavitation was present
throughout the gage length. Thus the failure was typical of that for creep fracture
with most of the cracks being orientated at right angles to the applied stress direc-
tion. The fracture path in the equal strain rate test was intergranular (Fig. 4). Also
internal and short surface intergranular cracks were observed. The surface cracks
were about one grain in depth and less numerous than in the slow–fast specimen.
There was evidence of cavities either near the fracture or in the bulk of the speci-
men.

The slow strain rate tension test failed by the propagation of an intergranular
crack. Microscopically the specimen was very similar to the equal ramp test with
intergranular wedge cracks being situated near the fracture surface and no cracking
in the bulk region.

Thus, metallography of the specimen indicated that the decrease in fatigue
life was associated with a change in the fracture mode from transgranular to in-
tergranular cracking. Cavity damage occurred only when the tensile–going strain
rate was less than the compressive–going strain rate.

Similar results have been obtained for the stainless steel (AISI 304) tested
at 923 K in air and vacuum, cf. Sidey and Coffin (1979).

3. KINEMATICS OF FINITE DEFORMATION AND FUNDAMEN-
TAL DEFINITIONS

3.1. Fundamental measures of total deformation
Our notation throughout is as follows: B and S are manifolds, points in B

are denoted X and those in S by x. The tangent spaces are written TXB and TxS .
Coordinate systems are denoted {XA} and {xa} for B and S , respectively, with
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corresponding bases EA and ea and dual bases EA and ea.
Let us take the Riemannian spaces on manifolds B and S , i.e. {B,G} and

{S,g}, the metric tensors G and g are defined as follows G : TB → T ∗B and
g : TS → T ∗S , where TB and TS denote the tangent bundles of B and S ,
respectively, and T ∗B and T ∗S their dual tangent bundles.

Let the metric tensor GAB be defined by GAB(X) = (EA,EB)X, and sim-
ilarly define gab by gab(x) = (ea, eb)x, where ( , )X and ( , )x denote the standard
inner products in B and S , respectively.

Let
x = φ(X, t) (3.1)

be regular motion, then φt : B → S is a C1 actual configuration (at time t) of B in
S . The tangent of φ is denoted F and is called the deformation gradient of φ; thus
F = Tφ. For X ∈ B, we let F(X) denote the restriction of F to TXB.

Thus
F(X, t) : TXB → Tx=φ(X,t)S (3.2)

is a linear transformation for each X ∈ B and t ∈ I ⊂ IR. For each X ∈ B
there exists an orthogonal transformation R(X) : TXB → TxS such that F =
R · U = V · R. Notice that U and V operate within each fixed tangent space.
We call U and V the right and left stretch tensor, respectively. For each X ∈ B,
U(X) : TXB → TXB and for each x ∈ S , V(x) : TxS → TxS .

The material (or Lagrangian) strain tensor E : TXB → TXB is defined by

2E = C − I, (I denotes the identity on TXB), (3.3)

where
C = FT · F = U2 = B−1. (3.4)

The spatial (or Eulerian) strain tensor e : TxS → TxS is defined by

2e = i − c, (i denotes the identity on TxS), (3.5)

where
c = b−1 and b = F · FT = V2. (3.6)

The various strain tensors can be redefined in terms of pull–back and push–forward
operations. For the material strain tensor E and the spatial strain tensor e we have

E[ = φ∗(e[), EAB(X) = eab(x)F a
A(X)F b

B(X), (3.7)

e[ = φ∗(E
[), eab(x) = EAB(X)(F(X)−1)A

a (F(X)−1)B
b ,

where the symbol [ denotes the index lowering operator.
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3.2. Finite elasto–viscoplastic deformation
Motivated by the micromechanics of single crystal plasticity we postulate a

local multiplicative decomposition of the form

F(X, t) = Fe(X, t) · Fp(X, t), (3.8)

where Fe−1 is interpreted as the local deformation that releases the stresses from
each neighborhood N (x) ⊂ φ(B) in the current configuration of the body, cf.
Fig. 5.

Let us consider a particle X , which at time t = 0 occupied the place X in
the reference (material) configuration B, its current place at time t in the actual
(spatial) configuration S is x = φ(X, t) and its position in the unloaded actual
configuration S ′

is denoted by y. Thus we have

Fe : TyS
′ → TxS, Fp : TXB → TyS

′

, (3.9)

where TyS ′

denotes the tangent space in the unloaded actual configuration S ′

. It
is noteworthy that Fe and Fp defined by (3.9) are linear transformations.

We shall tread the tangent space TyS ′

as an auxiliary tool which helps to
define the plastic strain tensors1.

The plastic strain tensor Ep : TXB → TXB is defined by

Ep =
1

2
(Cp − I), (3.10)

where
Cp = FpT · Fp = Up2

= Bp−1

and Ee def
= E − Ep. (3.11)

Similarly the elastic strain tensor ee : TxS → TxS is defined by

ee =
1

2
(i − ce), (3.12)

where

ce = be−1

, be = Fe · FeT

= Ve2

and ep def
= e − ee. (3.13)

It is noteworthy to compare the relation

F = R · U = V · R (3.14)

with
F = Fe · Fp = Re · Ue · Rp · Up = Ve · Re · Vp · Rp. (3.15)

The following commutative diagrams summarize the situation.
1For precise definition of the finite elasto–plastic deformation see Perzyna (1995) and Duszek–

Perzyna and Perzyna (1998). Different approach to define the finite elasto–plastic deformation has
been presented by Nemat–Nasser (1992).
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From the second diagram it is clear that the tangent space TyS ′

is playing an
auxiliary role indeed.

The plastic tensors Epand ep operate within each fixed tangent space; that
is Ep : TXB → TXB and ep : TxS → TxS .

We can show that the following relations are valid

φ∗(E
p[

) = ep[

, φ∗(ee[

) = Ee[

. (3.16)

3.3. Rates of the deformation tensor
Let φ(X, t) be aC2 motion of B. Then the spatial velocity is υt = Vt◦φ−1

t ,
where Vt = ∂φ

∂t is the material velocity, i.e. υ : S × I → TS , I ⊂ IR.
The collection of maps φt,s such that for each s and x, t → φt,s(x) is an

integral curve of υ, and φs,s(x) = x, is called the flow or evolution operator of υ,
i.e.

{φt,s | φt,s = φt ◦ φ−1
s : φs(B) → φt(B)} (3.17)

and
φt,s ◦ φs,r = φt,r, φt,t = identity (3.18)
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for all r, s, t ∈ I ⊂ IR.
If t is a C1 (possible time–dependent) tensor field on S , then the Lie deriva-

tive of t with respect to υ is defined by2

Lυt =

(

d

dt
φ∗t,stt

)

|t=s . (3.19)

If we hold t fixed in tt, we obtain the autonomous Lie derivative

Lυt =

(

d

dt
φ∗t,sts

)

|t=s . (3.20)

Thus
Lυt =

∂t

∂t
+ Lυt. (3.21)

If t ∈ Tr
s(S) (elements of Tr

s(S) are called tensors on S , contravariant of order
r and covariant of order s) then Lυt ∈ Tr

s(S).
The spatial velocity gradient l is defined by

l = Dυ : TxS → TxS, i.e. lab = υa |b=
∂υa

∂xb
+ γa

bcυ
c, (3.22)

where γa
bc denotes the Christoffel symbol for g.

The spatial velocity gradient l can be expressed as follows

l = Dυ = Ḟ · F−1 = Ḟe · Fe−1

+ Fe · (Ḟp · Fp−1

) · Fe−1

=

= le + lp = d + ω = de + ωe + dp + ωp, (3.23)

where d denotes the spatial rate of deformation tensor and ω is called the spin.
Let us define the material (or Lagrangian) rate of deformation tensor D as

follows
D(X, t) =

∂

∂t
E(X, t). (3.24)

We have very important relation

d[ = Lυe[ = φ∗
∂

∂t
(φ∗e[) = φ∗(

∂

∂t
E[) = φ∗(D

[). (3.25)

On the other hand

d[ = Lυe[ = Lυ

[

1

2

(

g − b−1
)

][

=
1

2
Lυg =

=
1

2
(gcbυ

c |a +gacυ
c |b) ea ⊗ eb, (3.26)

2The algebraic and dynamic interpretations of the Lie derivative have been presented by Abraham
et al. (1988), cf. also Marsden and Hughes (1983).
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i.e. the symmetric part of the velocity gradient l (the symbol ⊗ denotes the tensor
product).

The components of the spin ω are given by

ωab =
1

2
(gacυ

c |b −gcbυ
c |a) =

1

2

(

∂υa

∂xb
− ∂υb

∂xa

)

, (3.27)

and
de[

= Lυee[

, dp[

= Lυep[

. (3.28)

3.4. Rates of the stress tensors
The first Piola–Kirchhoff stress tensor P aA is the two–point tensor obtained

by performing a Piola transformation on the second index of the Cauchy stress
tensor σ, i.e.

P aA = J(F−1)A
b σ

ab, (3.29)

where J denotes the Jacobian of the deformation.
The second Piola–Kirchhoff stress tensor S is defined as follows

SAB = (F−1)A
a P

aB = J(F−1)A
a (F−1)B

b σ
ab = (F−1)A

a (F−1)B
b τ

ab, (3.30)

i.e.
S = φ∗(τ ), (3.31)

where τ = Jσ is called the Kirchhoff stress tensor.
The rate of the Kirchhoff stress tensor τ is given by

Lυτ = φ∗
∂

∂t
(φ∗τ ) = φ∗(

∂

∂t
S) = F · ( ∂

∂t
S) · FT ◦ φ−1

t . (3.32)

Let us define

τ 1 = τabea ⊗ eb ∈ T2
0(S),

τ 2 = τa
bea ⊗ eb ∈ T1

1(S), (3.33)

τ 3 = τa
bea ⊗ eb ∈ T1

1(S).

Then

(Lυτ 1)
ab =

∂τab

∂t
+
∂τab

∂xc
υc − τ cb∂υ

a

∂xc
− τac∂υ

b

∂xc
. (3.34)

is the rate associated with the name Oldroyd (cf. Oldroyd (1950)). The Zaremba–
Jaumann rate (cf. Zaremba (1903a,b) and Jaumann (1911)) is defined as follows

1

2

[

(Lυτ 3)
a
cg

cb + gac(Lυτ 2)c
b
]

=
∂τab

∂t
+
∂τab

∂xc
υc + τadωd

b − τdbωa
d. (3.35)
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4. CONSTITUTIVE MODELLING FOR DYNAMIC CYCLIC LOAD-
INGS

4.1. Constitutive postulates
Constitutive theory is given most conveniently in the material picture be-

cause the domain B of the functions remains fixed. This helps to develop the iden-
tification procedure. However, it can be done spatially as well.

We introduce the four fundamental postulates:

(i) Existence of the free energy function. It is assumed that the free energy func-
tion is given by

ψ = ψ̂(e,F, ϑ; µ), (4.1)

where e denotes the Eulerian strain tensor, F is deformation gradient, ϑ tem-
perature and µ denotes a set of the internal state variables.

(ii) Axiom of objectivity (spatial covariance). The constitutive structure should
be invariant with respect to any diffeomorphism ξ : S → S (Marsden and
Hughes, 1983). Assuming that ξ : S → S is a regular, orientation preserv-
ing map transforming x into x

′

and Tξ is an isometry from TxS , to Tx′S we
obtain the axiom of material frame indifference.

Let us take again t ∈ Tr
s(S) a given time dependent spatial tensor field on S

and let ξ be a diffeomorphism of S to another manifold ξ(φ(B)). Any spatial
tensor field t ∈ Tr

s(S) is said to transform objectively under superposed diffeo-
morphism ξ if it transforms according to the rule

t
′

= ξ∗t, (4.2)

where ξ∗ is the push–forward operation.
Let υ

′

be the velocity field of ξt ◦ φt. Then we have (cf. Marsden and
Hughes, 1983)

Lυ′ t
′

= ξ∗(Lυt). (4.3)

This means that objective tensors have objective Lie derivatives. It is noteworthy
to recall here that rates which are objective with respect to diffeomorphisms are
called covariant.

The Oldroyd rate of the Kirchhoff stress tensor (3.34) is objective with re-
spect to diffeomorphisms while the Zaremba–Jaumann rate (3.35) is objective with
respect to isometries. The reason of it is caused by the fact that the operations of
raising and lowering indices do not commute with Lie differentiation. This corol-
lary has very important consequences for the formulation of the objective consti-
tutive structures.

Before the formulation of the third axiom let us discuss thermodynamic
restrictions. Consider balance principles as follows:
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1. Conservation of mass. Let assume that φ(X, t) is a C1 regular motion.
A mass density function ρ(x, t) is said to obey conservation of mass if

ρ̇+ ρdivυ = 0 or ρ(x, t)J(X, t) = ρRef (X). (4.4)

For damaged solid body the mass density ρ(x, t) is given by

ρ = ρM (1 − ξ) + ρV ξ, (4.5)

where ρM is the mass density of the matrix material and ρV the mass density
of voids. Assuming ρV � ρM we have

ρ = ρM (1 − ξ). (4.6)

Thus a function ρ(x, t) is said to obey conservation of mass if

ρM (1 − ξ)J(X, t) = ρ0
M (X) (1 − ξ0) = ρRef . (4.7)

2. Balance of momentum. Assume that conservation of mass and balance
of momentum hold. If there is no external body force field, then

ρυ̇ = div(
1

J
τ ). (4.8)

3. Balance of moment of momentum. Let conservation of mass and balance
of momentum hold. Then balance of moment of momentum holds if and only
if τ is symmetric.

4. Balance of energy. Assume the following balance principle hold: conser-
vation of mass, balance of momentum, balance of moment of momentum
and balance of energy. If there is no external heat supply then

ρ(ψ̇ + ϑη̇ + ηϑ̇) + divq =
ρ

ρRef
τ : d, (4.9)

where η denotes the specific (per unit mass) entropy and q is the heat vector
field.

5. Entropy production inequality. Assume conservation of mass, balance of mo-
mentum, moment of momentum, energy and entropy production inequality
hold. Then the reduced dissipation inequality is satisfied:

1

ρRef
τ : d − (ηϑ̇+ ψ̇) − 1

ρϑ
q · gradϑ ≥ 0. (4.10)
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(iii) The axiom of entropy production. For any regular process φt, ϑt, µt of a body
B the constitutive functions are assumed to satisfy the reduced dissipation
inequality (4.10). Marsden and Hughes (1983) proved that the reduced dis-
sipation inequality (4.10) is equivalent to the entropy production inequality
first introduced by Coleman and Noll (1963) in the form of the Clausius–
Duhem inequality. In fact the Clausius–Duhem inequality gives a statement
of the second law of thermodynamics within the framework of mechanics of
continuous media.

(iv) The evolution equation for the internal state variable vector µ is assumed in
the form as follows

Lυµ = m̂(e,F, ϑ,µ), (4.11)

where the evolution function m̂ has to be determined based on careful phys-
ical interpretation of a set of the internal state variables and analysis of avail-
able experimental observations.

The determination of the evolution function m̂ (in practice a finite set of the
evolution functions) appears to be the main problem of the modern consti-
tutive modelling.

4.2. Fundamental assumptions
The main objective is to develop the rate type constitutive structure for an

elastic–viscoplastic material in which the effects of the plastic non–normality, plas-
tic spin, plastic strain induced anisotropy (kinematic hardening), micro–damaged
mechanism and thermomechanical coupling are taken into consideration. To do
this it is sufficient to assume a finite set of the internal state variables. Let us
postulate

µ = (ζ, ξ,α), (4.12)

where ζ denotes the new internal state vector which describes the dissipation ef-
fects generated by viscoplastic flow phenomena, ξ is volume fraction porosity and
takes account for micro–damaged effects and α denotes the residual stress (the
back stress) and aims at the description of the kinematic hardening effects.

Let us introduce the plastic potential function f = f(J̃1, J̃2, ϑ,µ), where
J̃1, J̃2 denote the first two invariants of the stress tensor τ̃ = τ − α.

Let us postulate the evolution equations as follows

dp = ΛP, ωp = ΛΩ, Lυζ = ΛZ, ξ̇ = Ξ, Lυα = A, (4.13)

where for elasto–viscoplastic model of a material we assume (cf. Perzyna (1963,
1966, 1971, 1995))

Λ =
1

Tm
〈Φ(

f

κ
− 1)〉, (4.14)
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Tm denotes the relaxation time for mechanical disturbances, the isotropic work–
hardening–softening function κ is

κ = κ̂(∈p, ϑ, ξ), ∈p=

∫ t

0

(

2

3
dp : dp

)
1

2

dt, (4.15)

Φ is the empirical overstress function, the bracket 〈·〉 defines the ramp function,

P =
∂f

∂τ

∣

∣

∣

∣

ξ=const

(∣

∣

∣

∣

∣

∣

∣

∣

∂f

∂τ

∣

∣

∣

∣

∣

∣

∣

∣

)−1

, (4.16)

Ω, Z, Ξ and A denote the evolution functions which have to be determined.
It is noteworthy that the material function Z is intrinsically determined by

the constitutive assumptions postulated. To show this it is sufficient to perform a
Legendre transformation as has been presented by Duszek and Perzyna (1991b).

For our practical purposes it is sufficient to assume that the internal state
vector ζ is equal to the equivalent plastic deformation ∈p, i.e.

µ = (∈p, ξ,α). (4.17)

Then the material function Z is directly determined from

∈̇p = ΛZ =

(

2

3
dp : dp

)
1

2

=

√

2

3
Λ, (4.18)

i.e.

Z =

√

2

3
. (4.19)

4.3. Constitutive assumption for the plastic spin
The constitutive laws for the plastic spin3 based on the application of the

tensor function formulation have been proposed by Mandel (1971, 1973), Kra-
tochvil (1971), Dafalias (1983, 1985, 1987, 1988) and Loret (1983, 1985). Differ-
ent proposition by using generalized normality condition has been introduced by
Halphen (1975), Mandel (1982), Dafalias (1984) and Van der Giessen (1989).

Let us postulate that Ω has the form (cf. Dafalias, 1983 and Loret, 1983)

Ω = η∗(α · P − P · α), (4.20)

where η∗ denotes the scalar valued function of the invariants of the tensors α and
P, and may depend on temperature ϑ and porosity ξ.

3For a thorough discussion of a concept of the plastic spin and its constitutive description in
phenomenological theories for macroscopic large plastic deformations please consult the critical
review paper by Van der Giessen (1991).
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4.4. Intrinsic micro–damage process
An analysis of the experimental observations for cycle fatigue damage mech-

anisms at high temperature of metals performed by Sidey and Coffin (1979) sug-
gests that the intrinsic micro–damage process does very much depend on the strain
rate effects as well as on the wave shape effects, cf. chapter 2.

To take into consideration these observed time dependent effects it is ad-
vantageous to use the proposition of the description of the intrinsic micro–damage
process presented by Perzyna (1986a,b) and Duszek–Perzyna and Perzyna (1994).

Let us assume that the intrinsic micro–damage process consists of the nu-
cleation and growth mechanism4.

Physical considerations (cf. Curran et al. (1987) and Perzyna (1986a)) have
shown that the nucleation of microvoids in dynamic loading processes which are
characterized by very short time duration is governed by the thermally–activated
mechanism. Based on this heuristic suggestion and taking into account the influ-
ence of the stress triaxiality on the nucleation mechanism we postulate for rate
dependent plastic flow

(

ξ̇
)

nucl
=

1

Tm
h∗(ξ, ϑ)

[

exp
m∗(ϑ) | Ĩn − τn(ξ, ϑ,∈p) |

kϑ
− 1

]

, (4.21)

where k denotes the Boltzmann constant, h∗(ξ, ϑ) represents a void nucleation
material function which is introduced to take account of the effect of microvoid
interaction effect, m∗(ϑ) is a temperature dependent coefficient, τn(ξ, ϑ,∈p) is
the porosity, temperature and equivalent plastic strain dependent threshold stress
for microvoid nucleation,

Ĩn = a1J̃1 + a2

√

J̃
′

2 + a3

(

J̃
′

3

)
1

3 (4.22)

defines the stress intensity invariant for nucleation, ai (i = 1, 2, 3) are the material
constants, J̃1 denotes the first invariant of the stress tensor τ̃ = τ − α, J̃

′

2 and J̃
′

3

are the second and third invariants of the stress deviator τ̃
′

= (τ − α)
′

.
For the growth mechanism we postulate (cf. Carroll and Holt (1972), John-

son (1981); Perzyna (1986a,b, 1990); Perzyna and Drabik (1989, 2001))

(

ξ̇
)

grow
=

1

Tm

g∗(ξ, ϑ)√
κ0

[

Ĩg − τeq(ξ, ϑ,∈p)
]

, (4.23)

where Tm
√
κ0 denotes the dynamic viscosity of a material, g∗(ξ, ϑ) represents a

void growth material function and takes account for void interaction, τeq(ξ, ϑ,∈p)

4Recent experimental observation results (cf. Shockey et al. (1985)) have shown that coalescence
mechanism can be treated as nucleation and growth process on a smaller scale. This conjecture
simplifies very much the description of the intrinsic micro–damage process by taking account only
of the nucleation and growth mechanisms.
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is the porosity, temperature and equivalent plastic strain dependent void growth
threshold stress,

Ĩg = b1J̃1 + b2

√

J̃
′

2 + b3
(

J̃
′

3

)
1

3

, (4.24)

defines the stress intensity invariant for growth and bi (i = 1, 2, 3) are the material
constants.

Finally the evolution equation for the porosity ξ has the form

ξ̇ =
h∗(ξ, ϑ)

Tm

[

exp
m∗(ϑ) | Ĩn − τn(ξ, ϑ,∈p) |

kϑ
− 1

]

+ (4.25)

+
g∗(ξ, ϑ)

Tm
√
κ0

[

Ĩg − τeq(ξ, ϑ,∈p)
]

.

This determines the evolution function Ξ.
To have consistent theory of elasto–viscoplasticity we can replace the expo-

nential function in the nucleation term and the linear function in the growth term
by the empirical overstress function Φ, then the evolution equation for the porosity
ξ takes the form as follows

ξ∗ =
1

Tm
h∗(ξ, ϑ)〈Φ[

Ĩn

τn(ξ, ϑ,∈p)
− 1]〉 + (4.26)

+
1

Tm
g∗(ξ, ϑ)〈Φ[

Ĩg

τeq(ξ, ϑ,∈p)
− 1]〉.

4.5. Kinematic hardening
For a constitutive model describing the behaviour of a material under cyclic

loading processes the crucial role plays the evolution equation for the back stress
α, which is responsible for the description of the induced plastic strain anisotropy
effects.

We shall follow some fundamental results obtained by Duszek and Perzyna
(1991a) (cf. also Duszek and Perzyna (1988a,b). Let us postulate

Lυα = A(dp, τ̃ , ϑ, ξ). (4.27)

Making use of the tensorial representation of the function A and taking into ac-
count that there is no change of α when τ̃ = 0 and dp = 0 the evolution law
(4.27) can be written in the form (cf. Truesdell and Noll (1965))

Lυα = η1d
p + η2τ̃ + η3d

p2

+ η4τ̃
2 + η5 (dp · τ̃ + τ̃ · dp)

+η6

(

dp2 · τ̃ + τ̃ · dp2
)

+ η7

(

dp · τ̃ 2 + τ̃ 2 · dp
)

+η8

(

dp2 · τ̃ 2 + τ̃ 2 · dp2
)

, (4.28)
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where η1, . . . , η8 are functions of the basic invariant of dp and τ̃ , the porosity
parameter ξ and temperature ϑ.

A linear approximation of the general evolution law (4.28) leads to the result

Lυα = η1d
p + η2τ̃ . (4.29)

This kinetic law represents the linear combination of the Prager and Ziegler kine-
matic hardening rules.

To determine the connection between the material functions η1 and η2 we
take advantage of the geometrical relation (cf. Duszek and Perzyna (1991a))

(Lυα − rdp) : Q = 0, (4.30)

where

Q =

[

∂f

∂τ
+

(

∂f

∂ξ
− ∂κ

∂ξ

)

∂ξ

∂τ

] ∣

∣

∣

∣

∣

∣

∣

∣

∂f

∂τ
+

(

∂f

∂ξ
− ∂κ

∂ξ

)

∂ξ

∂τ

∣

∣

∣

∣

∣

∣

∣

∣

−1

, (4.31)

and r denotes the new material function.
The relation (4.30) leads to the result

η2 =
1

Tm
〈Φ(

f

κ
− 1)〉 [r(ξ, ϑ) − η1]

P : Q

τ̃ : Q
. (4.32)

Finally the kinematic hardening evolution law takes the form

Lυα =
1

Tm
〈Φ(

f

κ
− 1)〉

[

r1(ξ, ϑ)P + r2(ξ, ϑ)
P : Q

τ̃ : Q
τ̃

]

, (4.33)

where
r1(ξ, ϑ) = η1, r2(ξ, ϑ) = r − η1. (4.34)

It is noteworthy to add that the developed procedure can be used as general ap-
proach for obtaining various particular kinematic hardening laws. As an example
let us assume that the evolution function A in (4.27) instead of dp and τ̃ depends
on dp and α only (cf. Agah–Tehrani et al. (1987)). Then instead of (4.33) we
obtain

Lυα =
1

Tm
〈Φ(

f

κ
− 1)〉 [ζ1(ξ, ϑ)P − ζ2(ξ, ϑ)α] , (4.35)

where
ζ1 = r1, ζ2 = −r2(ξ, ϑ)

P : Q

α : Q
. (4.36)

When the infinitesimal deformations and rate independent response of a material
are assumed and the intrinsic micro–damage effects are neglected then the kine-
matic hardening law (4.35) reduces to that proposed by Armstrong and Frederick
(1966).
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The kinematic hardening law (4.35) leads to the nonlinear stress–strain re-
lation with the characteristic saturation effect. The material function ζ1(ξ, ϑ) for
ξ = ξ0 and ϑ = ϑ0 can be interpreted as an initial value of the kinematic hard-
ening modulus and the material function ζ2(ξ, ϑ) determines the character of the
nonlinearity of kinematic hardening. The particular forms of the functions ζ1 and
ζ2 have to take into account the degradation nature of the influence of the intrinsic
micro–damage process on the evolution of anisotropic hardening.

4.6. Thermodynamic restrictions and rate type constitutive relations
Suppose the axiom of the entropy production holds. Then the constitutive

assumption (4.1) and the evolution equations (4.13) lead to the results as follows

τ = ρRef
∂ψ̂

∂e
, η = −∂ψ̂

∂ϑ
, −∂ψ̂

∂µ
· Lυµ − 1

ρϑ
q · gradϑ ≥ 0. (4.37)

The rate of internal dissipation is determined by

ϑî = −∂ψ̂
∂µ

· Lυµ = −
[

∂ψ̂

∂ ∈p

√

2

3
+
∂ψ̂

∂α
:

(

r1P + r2
P : Q

τ̃ : Q
τ̃

)

]

Λ − ∂ψ̂

∂ξ
Ξ.

(4.38)
Operating on the stress relation (4.37)1 with the Lie derivative and keeping the
internal state vector constant, we obtain (cf. Duszek–Perzyna and Perzyna (1994))

Lυτ = Le : d − Lthϑ̇− [(Le + gτ + τg + W) : P]
1

Tm
〈Φ(

f

κ
− 1)〉, (4.39)

where

Le = ρRef
∂2ψ̂

∂e2
, Lth = −ρRef

∂2ψ̂

∂e∂ϑ
, W = η∗[(gτ − τg) : (αg − gα)].

(4.40)
Substituting ψ̇ into the energy balance equation and taking into account the results
(4.37)3 and (4.38) gives

ρϑη̇ = −divq + ρϑî. (4.41)

Operating on the entropy relation (4.37)2 with the Lie derivative and substi-
tuting the result into (4.41) we obtain

ρcpϑ̇ = −divq + ϑ
ρ

ρRef

∂τ

∂ϑ
: d + ρχ∗τ : dp + ρχ∗∗ξ̇, (4.42)

where the specific heat

cp = −ϑ∂
2ψ̂

∂ϑ2
(4.43)
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and the irreversibility coefficients χ∗ and χ∗∗ are determined by

χ∗ = −
[(

∂ψ̂

∂ ∈p
− ϑ

∂2ψ̂

∂ϑ∂ ∈p

)

√

2

3
+ (4.44)

+

(

∂ψ̂

∂α
− ϑ

∂2ψ̂

∂ϑ∂α

)

:

(

r1P + r2
P : Q

τ̃ : Q
τ̃

)

]

1

τ : P
,

χ∗∗ = −
(

∂ψ̂

∂ξ
− ϑ

∂2ψ̂

∂ϑ∂ξ

)

.

4.7. Fracture criterion based on the evolution of microdamage
We base the fracture criterion on the evolution of the porosity internal state

variable ξ. The volume fraction porosity ξ takes account for microdamage effects.
Let us assume that for ξ = ξF catastrophe takes place (cf. Perzyna (1984)),

that is
κ = κ̂(∈p, ϑ, ξ)|ξ=ξF = 0. (4.45)

It means that for ξ = ξF the material loses its carrying capacity. The condition
(4.45) describes the main feature observed experimentally that the load tends to
zero at the fracture point.

In is noteworthy that the isotropic hardening–softening material function κ̂
proposed in Eq. (4.15)1 should satisfy the fracture criterion (4.45).

5. NUMERICAL SOLUTION OF THE INITIAL – BOUNDARY
VALUE PROBLEM (EVOLUTION PROBLEM)

5.1. Adiabatic inelastic flow process
5.1.1. Formulation of an adiabatic inelastic flow process
Let us define an adiabatic inelastic flow process as follows (cf. Perzyna (1994,
1995) and Łodygowski and Perzyna (1997a,b)). Find φ, υ, ρ, τ , α, ξ and ϑ as
function of t and x such that

(i) the field equations

φ̇ = υ,

υ̇ =
1

ρRef

(

τ

ρ
gradρ+ divτ

)

,

ρ̇ = −ρ divυ, (5.1)

τ̇ =

(

Le − ϑ

cpρRef
Lth∂τ

∂ϑ

)

: sym
∂υ

∂x
+ 2sym

(

τ :
∂υ

∂x

)

− 1

Tm
〈Φ(

f

κ
− 1)〉
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−
[(

Le +
χ∗

ρcp
Lthτ + gτ + τg + W

)

: P

]

−χ
∗∗Ξ

ρcp
Lth,

α̇ = 2sym
(

α :
∂υ

∂x

)

+
1

Tm
〈Φ(

f

κ
− 1)〉

[

r1(ξ, ϑ)P + r2(ξ, ϑ)
P : Q

τ̃ : Q
τ̃

]

,

ξ̇ = Ξ,

ϑ̇ =
ϑ

cpρRef

∂τ

∂ϑ
: sym

∂υ

∂x
+

1

Tm
〈Φ(

f

κ
− 1)〉χ

∗

cp
τ : P +

χ∗∗

cp
Ξ;

(ii) the boundary conditions

(a) displacement φ is prescribed on a part ∂φ of ∂φ(B) and
tractions (τ · n)a are prescribed on part ∂τ of ∂φ(B),
where ∂φ ∩ ∂τ = 0 and ∂φ ∪ ∂τ = ∂φ(B);

(b) heat flux q · n = 0 is prescribed on ∂φ(B);

(iii) the initial conditions
φ, υ, ρ, τ , α, ξ and ϑ are given at each particle X ∈ B at t = 0;

are satisfied.
This evolution problem can be prescribed in the matrix notation as follows

(i) ϕ̇ = A(t,ϕ)ϕ + f(t,ϕ)
(ii) ϕ(0) = ϕ0(x) — initial conditions
(iii) The boundary conditions











(5.2)

5.1.2. Basic features of rate dependent plastic model
Rate dependency (viscosity) allows the spatial difference operator in the governing
equations to retain its ellipticity and the initial value problem (the Cauchy problem)
is well–posed. Viscosity introduces implicitly a length–scale parameter into the
dynamical innitial–boundary value problem. The theory of viscoplasticity gives
the possibility to obtain mesh–insensitive results.

Since the rate independent plastic response is obtained as the limit case
when the relaxation time is equal to zero hence the theory of viscoplasticity of-
fers the regularization procedure for the solution of dynamical initial–boundary
value problems under cyclic loadings. Due to that we can investigate numerically
the fatigue damage.

5.2. Application of finite difference method
Let us consider the evolution problem in the form of (5.2). Let us introduce

in the Euclidean space E3 a regular difference net of nodes (i, j, k) with convective
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coordinates χ1
i = i∆χ1, χ2

j = j∆χ2 and χ3
k = k∆χ3, i, j, k ∈ N , where N is a

set of natural numbers, cf. Dornowski (1999). Of course, some of the nodes belong
to the edge of the body and are used to approximate the boundary conditions. Time
is approximated by a discrete sequence of moments tn = n∆t, where ∆t is time
step, n ∈ N .

For all functions ϕ = ϕ̂(x, t) of the analysed problem (5.2) we postulate the
following approximation in the domain ∆E = ∆χ1 ×∆χ2 ×∆χ3 of a convective
difference mesh (cf. Fig. 6):

ϕ(x, t) ∼= ϕh(x, t) = a1(t) + a2(t)χ
1 + a3(t)χ

2 + a4(t)χ
3

a5(t)χ
1χ2 + a6(t)χ

1χ3 + a7(t)χ
2χ3 +

a8(t)χ
1χ2χ3, (5.3)

x ∈ ∆S.
The functions a1(t), . . . ,a8(t) depend only on time, are determined by the value of
the function ϕw(t) = [ϕ1(t), . . . ,ϕ8(t)]

T in the node points of difference mesh,
(cf. Fig. 6). Hence the approximation functions (5.3) can be written in the form

ϕh(x, t) = N(x)ϕw(t), x ∈ ∆S, (5.4)

where

N1(x) = q
(

−∆χ1 + 2χ1
) (

−∆χ2 + 2χ2
) (

∆χ3 − 2χ3
)

,

N2(x) = q
(

∆χ1 + 2χ1
) (

−∆χ2 + 2χ2
) (

−∆χ3 + 2χ3
)

,

N3(x) = q
(

−∆χ1 + 2χ1
) (

∆χ2 + 2χ2
) (

−∆χ3 + 2χ3
)

,

N4(x) = q
(

∆χ1 + 2χ1
) (

∆χ2 + 2χ2
) (

∆χ3 − 2χ3
)

,

N5(x) = q
(

−∆χ1 + 2χ1
) (

−∆χ2 + 2χ2
) (

∆χ3 + 2χ3
)

, (5.5)

N6(x) = q
(

∆χ1 + 2χ1
) (

∆χ2 − 2χ2
) (

∆χ3 + 2χ3
)

,

N7(x) = q
(

∆χ1 − 2χ1
) (

∆χ2 + 2χ2
) (

∆χ3 + 2χ3
)

,

N8(x) = q
(

∆χ1 + 2χ1
) (

∆χ2 + 2χ2
) (

∆χ3 + 2χ3
)

,

q =
1

8∆χ1∆χ2∆χ3
.

Equations (5.4) allow to determine values of the function ϕh(x, t) in any point of
the difference mesh, x ∈ ∆S . For the central point x = x0, N1 = · · · = N8 = 1

8
and ϕh(t) = [ϕ1(t) + . . .+ ϕ8(t)]

1
8 .

By using (5.4) we can determine the matrix of the difference operators
which approximate the first partial derivatives of the function ϕ(x, t) for x ∈ ∆S ,

∂

∂x
ϕ(x, t) ∼= ∂

∂x
ϕh(x, t) =

∂

∂x
N(x)ϕw(t) = R(x)ϕw(t). (5.6)
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The matrix of the difference operator R(x) for the central point takes the form

R(x = x0) =
∂

∂x
N(x)

∣

∣

∣

∣

x=x0

= (5.7)

=











−1
∆χ1

1
∆χ1

−1
∆χ1

1
∆χ1

−1
∆χ1

1
∆χ1

−1
∆χ1

1
∆χ1

−1
∆χ2

−1
∆χ2

1
∆χ2

1
∆χ2

−1
∆χ2

−1
∆χ2

1
∆χ2

1
∆χ2

−1
∆χ3

−1
∆χ3

−1
∆χ3

−1
∆χ3

1
∆χ3

1
∆χ3

1
∆χ3

1
∆χ3











.

In similar way we can find the difference form of the spatial difference operator
A(t,ϕ) of the considered evolution problem (5.2)

A(t,ϕ)ϕ ∼= A(t,ϕh)N(x)ϕw(t) = Ah(t,ϕh)ϕw(t), (5.8)

hence
Ah(t,ϕh) = A(t,ϕh)N(x) for x ∈ ∆S. (5.9)

For the central node, x = x0 the difference operator (5.9) depends only on time.
As a result of the proposed approximation of the evolution problem (5.2)

with respect to the spatial variables we obtain a set of differential equations with
respect to time and difference equations with respect to spatial variables

d ϕh(t)

dt
= Ahϕw(t) + fh(t). (5.10)

For the approximation of (5.10) with respect to time we use the evident scheme of
the first order in the form

d ϕh(t)

dt
∼= ϕn+1

h − ϕn
h

∆t
= Ahϕn

w + fn
h . (5.11)

The solution of (5.11) is reduced to the realization of the recurrence relation

ϕn+1
h = Ch(∆t)ϕn

w + ∆tfn
h . (5.12)

The difference operator
Ch(∆t) = ∆tAh + N (5.13)

couple dependent variables and various points of difference mesh.

5.3. Stability criterion
In explicit finite difference scheme for a set of the partial differential equa-

tions (5.2)(i) of the hiperbolic type the condition of stability is the criterion of
Courant–Friedrichs–Lewy, cf. Courant et al. (1928)

∆tn,n+1 ≤ min





∆Ln
p,q,r

∣

∣

∣cnp,q,r

∣

∣

∣



 , p = 1, 2, 3, . . . , P ; (5.14)

q = 1, 2, 3, . . . , Q; r = 1, 2, 3, . . . , R,



62 Wojciech Dornowski, Piotr Perzyna

where ∆tn,n+1 denotes time step, cnp,q,r denotes the velocity of the propagation of
the disturbances in the vicinity of the central node (p, q, r), ∆Ln

p,q,r is the mini-
mum distance between the mesh nodes which are in the vicinity of the node (cf.
Fig. 6).

The Courant–Friedrichs–Lewy condition requires that the numerical domain
of dependence of a finite–difference scheme include the domain of dependence of
the associated partial differential equations, cf. Durran (1999).

5.4. The Lax–Richtmyer equivalence theorem
We can now state the Lax–Richtmyer equivalence theorem (cf. Richtmyer

and Morton (1967), Strang and Fix (1973), Dautray and Lions (1993) and Gustafs-
son, Kreiss and Oliger (1995)).

Theorem. Suppose that the evolution problem (5.2) is well–posed for t ∈ [0, t0]
and that it is approximated by the scheme (5.12), which we assume consis-
tent. Then the scheme is convergent if and only if it is stable.

The proof of the Lax–Richtmyer equivalence theorem for the case when the
partial differential operator A in (5.2) is independent of ϕ can be found in Dautray
and Lions (1993).

Remark. Let us consider the evolution problem (5.2) with

f(t,ϕ) 6= 0 (5.15)

and ϕ0 = 0, and also the corresponding approximation (5.12). We have

ϕn+1
h = ∆t

n
∑

j=1

[Ch(∆t)]n−j
f
j
h. (5.16)

If A is the ifinitesimal generator of a semigroup {IF (t)} we can write

ϕ(t) =

∫ t

0
IF (t− s)f(s)ds. (5.17)

Under suitable hypotheses on the convergence of f
j
h to f(j∆t) we can show that

expression (5.16) converges to (5.17) if the scheme is stable and consistent.
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6. PARTICULAR EXAMPLES

6.1. Dynamic, adiabatic and isothermal, cyclic complex loading pro-
cesses for a thin plate with small rectangular hole
Let us consider dynamic, adiabatic and isothermal, cyclic loading processes

for a thin steel plate with small rectangular hole located in the centre. To the upper
edge of the plate the normal and parallel displacements are applied while the lower
edge is supported rigidly. Both these displacements change in time cyclically, see
Fig. 7 (cf. Dornowski and Perzyna (1999, 2000a,c)).

It has been assumed that both displacements have the same character of
change in time.

We consider the cyclic displacement constraints in the form of the three dif-
ferent loading characteristics (adiabatic and isothermal) in time, namely slow–fast,
equal–equal and fast–slow, cf. Fig. 7. All three types of constraints are repre-
sented by positive cycles, pulsating from zero and having the same amplitudes:
V max = 0.6 mm, Umax = 0.2 mm, and the same period. They have different time
for tensile deformation Tt and compress deformation Tc in a cycle as it has been
shown in Fig. 7. The tensile and compress constraints are described by the sine
functions as follows:

Vt

Ut







=
1

2







V max V max

sinπ
(

t
Tt

− 1
2

)

+

Umax Umax






, t ∈ (0, Tt), (6.1)

Vc

Uc







=
1

2







V max V max

sinπ
(

t
Tc

+ 1
2

)

+

Umax Umax






, t ∈ (0, Tc). (6.2)

The material of a plate is AISI 4340 steel, which is characterized by material
constants listed in Table 2. These parameters have been identified in Dornowski
(1999) and Dornowski and Perzyna (2000c). It has been assumed very dense mesh,
namely N ×M = 64 × 64 = 4096 nodes.

The influence of the wave shape and temperature on the σY Y − eY Y re-
lation has been shown in Fig. 8 (all results concern the node near the tip of the
rectangular hole, see the black quadrangle in Fig. 7). The maximum stress σY Y

per cycle as a function of number of cycles is plotted in Fig. 9. The evolution of
microdamage ξgrow for different loading processes is presented in Fig. 10. The
distribution of the plastic equivalent deformation in the plate after ten cycles in the
isothermal slow–fast loading process has been shown in Fig. 11. The distribution
of the microdamage ξgrow is presented in Fig. 12. The distribution of temperature
in the plate after ten cycles in the adiabatic slow–fast loading process has been
shown in Fig. 13.
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Table 2. Material constants for AISI 4340 steel

κ∗s = 809 MPa, κ∗∗s = 228 MPa, κ∗0 = 598 MPa, κ∗∗0 = 168 MPa,
δ∗ = 14.00, δ∗∗ = 3.94, β∗ = 9.00, β∗∗ = 2.53,
ϑ0 = 293 K, ξF = 0.20, ρRef = 7850 kg/m3 µ = 76.92 GPa,
λ = 115.38 GPa, θ = 12 · 10−6 K−1, Tm = 2.5 ms, m = 1,
ζ∗1 = 15.00 GPa, ζ∗∗1 = 4.22 GPa ζ∗2 = 69.60 ζ∗∗2 = 19.60
c1 = 0.202, c2 = 6.7 · 10−2, b1 = 1.00 b2 = 1.30
ξ0 = 6 · 10−4, χ = 0.85, χ = 0 cp = 455 J/kg K

6.1.1. Analysis of the influence of various effects
(i) Shape of loading waves

From the results presented in Figs. 8–10 it is clearly shown that the accumulation of
microdamage distinctly depends on the wave shape of the assumed loading cycle.
The condition can be drown that cycles with longer time of applied tensile stress
lead sooner to the softening of the material, cf. Fig. 10. Different strain rate in
a cycle for different kind of adiabatic process influences the character of changes
of the consider stress. Difference in amplitude of tensile stress for S–F and F–S
loadings are implied by viscosity of a material. For all cases the effect of plastic
hardening is characteristic. The saturation of hardening is first observed for S–F
loading process (after 5 cycles). These conclusions are in good agreement with the
experimental observations presented by Sidey and Coffin (1979).

(ii) Softening effects

There are two reasons for softening effects, namely the microdamage mechanisms
and thermomechanical coupling. Both these effects are very well visible in the
results presented in Fig. 9. For adiabatic process the softening effect is caused
by both reasons and is very high, while for isothermal process the softening is
generated only by microdamage mechanisms and is smaller. It is noteworthy to
stress that the microdamage process is influenced very much by thermomechanical
effects. This is very well visible from the results presented in Fig. 9.

6.2. Dynamic, adiabatic, cyclic loading processes for a thin plate with
sharp notch
To investigate more precisely the development of fatigue damage and the

propagation of the macrocrack let us consider a dynamic adiabatic cyclic loading
process for a thin steel plate with sharp notch, as shown in Fig. 14. To the upper
edge of the plate cyclic constraint realized by rigid rotation of the edge of the plate
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is applied while the lower edge is supported rigidly (cf. Dornowski and Perzyna
(2000d)).

It is considered the cyclic rotation constraint in the form of the loading char-
acteristic (adiabatic) in time, namely slow–fast. This type of constraint is repre-
sented by positive cycle, pulsating from zero and having the amplitude αmax =
1.2 deg and the period T = 4.0 ms. It has different time for positive rotation
Tp = 3.6 ms and negative rotation Tn = 0.4 ms. The positive and negative rota-
tions are described by the sine functions. The material of the plate is AISI steel
(cf. Table 2).

Utilizing the finite difference method for regularized thermo–elasto–visco-
plastic model, the numerical investigation of the three–dimensional dynamic adia-
batic deformation in a thin plate with sharp notch is presented.

7. LOCALIZATION AND FRACTURE PHENOMENA

7.1. Discussion of the localization of plastic deformation

The results presented in Fig. 11 have clearly shown the localization phe-
nomena of plastic deformation in small two asymmetric regions located near the
tips of the rectangular hole. Of course, the localization is very much diffused, what
is typical for an elastic–viscoplastic model of a material.

From the examination of the results presented in Figs. 12 and 13 we can
draw the conclusion that also the distributions of microdamage and temperature
are very much localized.

7.2. Investigation of localized fatigue fracture phenomena

The distribution of the norm of the Kirchhoff stress tensor ‖τ‖ for a thin
plate with sharp notch for chosen instants during two deformation cycles has been
shown in Fig. 15. The results illustrate the formation of the greatest stress zones
in the vicinity of the notch. The characteristic unsymmetrical distribution of these
zones is a result of the assumed boundary conditions. In Fig. 16 the evolution of the
plastic equivalent deformation in the vicinity of the developed fatigue macrocrack
is presented. In the initial part of the cyclic deformation process (several cycles),
the plastic zone has a characteristic shape (seed of maple). Such a form of the plas-
tic zone has been observed experimentally. For the advanced cyclic deformation
process (i.e. when the number of cycles is increased) the plastic zone is very much
restricted to the vicinity of the macrocrack. The macrocrack direction is consistent
with the least radius direction of the initial plastic zone. The strong concentration
of plastic deformation has been seen on the front of the macrocrack. The evolution
of temperature is shown in Fig. 17. Zones of increased temperature correspond to
the plastic zones. The maximum value of temperature is ϑmax = 879 K. The effect
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of such a strong heating of the material results from its mechanical properties, i.e.
the high strength steel, Rm = 1400 MPa.

In Fig. 18 the evolution of microdamage is presented. The domain of mi-
crodamage is limited to the vicinity of the macrocrack. This effect is a result of the
strong concentration of microdamage process on the front of the macrocrack. The
complex evolution of the plastic rotation is shown in Fig. 4.23. In the domain lying
above the macrocrack the plastic rotation has negative value, i.e. the rotation in the
left direction in relation to the assumed coordinate system, while in the domain ly-
ing below the macrocrack it has positive value. It is noteworthy that the border be-
tween these two domains is consistent with the macrocrack direction. The results
for the length of macroscopic fatigue damage crack versus number of cycles for
various cyclic loading processes (slow–fast (Tp = 3.6 ms, Tn = 0.4 ms), equal–
equal (Tp = 2.0 ms, Tn = 2.0 ms) and fast–slow (Tp = 0.4 ms, Tn = 3.6 ms))
have been plotted in Fig. 20. These results have clearly shown that the length of
the macroscopic fatigue damage crack distinctly depends on the wave shape of the
assumed loading cycle. It has been proved that the most dangerous situation we
have for the slow–fast cyclic loading process. This result is in accord with the ex-
perimental observations performed by Sidey and Coffin (1979). This conclusion
is approved by the comparison of the speed of macroscopic crack propagation for
various loading processes, cf. Fig. 21. From this comparison it is clear that the
speed value of macroscopic crack propagation for the slow–fast cyclic loading has
dominating character almost for the entire process considered.

8. FINAL COMMENTS

We hope that a new constitutive model proposed is sufficiently simple in its
nature that it can be applicable to the numerical solution of initial–boundary value
problems under cyclic loadings.

The crucial idea in this theory is the very efficient interpretation of a finite
set of the internal state variables as the equivalent plastic deformation, volume
fraction porosity and the residual stress (the back stress). To describe suitably
the time and temperature dependent effects observed experimentally and the ac-
cumulation of the plastic deformation and damage during dynamic cyclic loading
process the kinetics of microdamage and the kinematic hardening law have been
modified. To show how the modification of the evolution equation for the porosity
parameter ξ helps to describe the accumulation of damage during dynamic cyclic
loading process the evolution of the microdamage ξgrow in a node near the tip
of the hole (black quadrangle) for different forms of the stress intensity invariant
for adiabatic process and various wave shape loadings is presented in Fig. 22.

The performed numerical simulations of the dynamic, cyclic loading pro-
cess have proven the usefulness of the thermo–elasto–viscoplastic theory. The vis-
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coplastic regularization procedure assures the stable integration algorithm by using
the finite difference method. Convergence, consistency, and stability of the discre-
tised problem are discussed. The Lax–Richtmyer equivalence theorem is formu-
lated and conditions under which this theorem is valid are examined. The accumu-
lation of damage and equivalent plastic deformation on each considered cycle has
been obtained. It has been numerically found that accumulation of microdamage
distinctly depends on the wave shape of the assumed loading cycle.

In a particular numerical example considered (a dynamic, adiabatic, cyclic
loading process for a thin plate with sharp notch) small localized region, distributed
asymmetrically near the tip of the notch, which undergoes significant deforma-
tion and temperature rise has been determined. Its evolution until occurrence
of fatigue fracture in the form of a macrocrack has been simulated. The inves-
tigation of the propagation macroscopic fatigue damage crack within the material
of the plate has shown that the length of the macrocrack distinctly depends also
on the wave shape of the assumed loading cycle. This conclusion is approved by
the comparison of the speed of macroscopic crack propagation for various loading
processes.
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Figure 1. Wave shapes and resulting hysteresis loops for equal and unequal forward and re-
serve strain rates (After Sidey and Coffin (1979))
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Figure 2. Main failure crack in OFHC copper after fast–slow cycling showing transgranu-
lar fracture mode (After Sidey and Coffin (1979))
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Figure 3. Fracture edge of slow–fast cycle specimen showing intergranular fracture path
and surface and interior intergranular cracks (After Sidey and Coffin (1979))
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Figure 4. Equal ramp cycle specimen in unetched condition showing interlinkage of wedge
cracks near the fracture edge (After Sidey and Coffin (1979))

Figure 5. Schematic representation of the multiplicative decomposition by means
of the tangent spaces
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Figure 6. Convective finite difference mesh of nodes

Figure 7. Geometry, kinematic constraints and finite difference discretization (4096 nodes)
of the thin steel plate with small rectangular hole located in the center (all dimensions are
in milimeters)
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Figure 8. Influence of the wave shape and temperature on the σY Y − eY Y relation, solid
line – adiabatic process, dashed line – isothermal process, (a) slow–fast, (b) equal–equal,
(c) fast–slow
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Figure 9. Maximum stress σY Y per cycle as a function of number of cycles

Figure 10. Evolution of the damage ξgrow for different loading processes
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Figure 11. Distribution of the plastic equivalent strain in the plate after ten cycles
of the isothermal slow–fast process
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Figure 12. Distribution of the microdamage ξgrow in the plate after ten cycles
of the isothermal slow–fast process



Localization and Localized Fracture Phenomena under Cyclic Dynamic Loadings 81

Figure 13. Distribution of temperature ϑ in the plate after ten cycles of the adiabatic slow–
fast process
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Figure 14. Geometry and kinematic constrains of the thin steel plate with sharp notch

Figure 15. Distribution of the norm of the Kirchhoff stress for chosen instants during two
deformation cycles
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Figure 16. Evolution of the equivalent plastic deformation in the vicinity of the developed
fatigue damage
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Figure 17. Evolution of temperature in the vicinity of the developed fatigue damage
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Figure 18. Evolution of the microdamage in the vicinity of the developed fatigue macroc-
rack
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Figure 19. Evolution of the plastic rotation in the vicinity of the developed fatigue macro-
crack
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Figure 20. The length of macroscopic fatigue damage crack versus number of cycles
for various loading processes

Figure 21. The speed of macroscopic crack propagation versus number of cycles for vari-
ous loading processes
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Figure 22. Evolution of the damage ξgrow for different forms of the stress intensity invari-
ant (adiabatic process), (a) slow–fast, (b) equal–equal, (c) fast–slow


